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Learning Objectives

Implement the topological sort
algorithm.

Prove that a DAG can be linearly
ordered.
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Last Time

m Directed graphs.
m Linearly order vertices.
m Requires DAG.



| ast Vertex

Consider the last vertex in the ordering. It
cannot have any edges pointing out of it.
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Sources and Sinks

Definition
A source is a vertex with no incoming edges.
A sink is a vertex with no outgoing edges.



Problem

How many sinks does the graph below have?



Solution
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Find sink.
Put at end of order.
Remove from graph.

Repeat.
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Finding Sink

Question: How do we know that there is a
sink?



Follow Path

Follow path as far as possible
vi — v — ... — v,. Eventually either:

m Cannot extend (found sink).

m Repeat a vertex (have a cycle).
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First Try

LinearOrder(G)

while G non-empty:
Follow a path until cannot extend
Find sink v
Put v at end of order
Remove v from G
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Runtime

m O(|V]) paths.
m Each takes O(|V|) time.
= Runtime O(|V[?).



Speed Up

m Retrace same path every time.

m Instead only back up as far as necessary.
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Observation

This is just DFS!



Observation

This is just DFS!
We are sorting vertices based in postorder!



Better Algorithm

TopologicalSort(G)

DFS(G)
sort vertices by reverse post-order
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Theorem

Theorem

If G is a DAG, with an edge u to v,
post(u) > post(v).



Proof

Consider cases
m Explore v before exploring u.
m Explore v while exploring u.

m Explore v after exploring u (cannot
happen since there is an edge).



Case |

Explore v before exploring u.
m Cannot reach u from v (DAG)
m Must finish exploring v before find u
m post(u) > post(v).



Case |l

Explore v while exploring u.
Must finish exploring v before can finish
exploring u. Therefore post(u) > post(v).



Next Time

Connectivity in directed graphs.
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